
1 

 

Integrative mapping of spatial transcriptomic and amyloid pathology in 

Alzheimer’s disease at single-cell resolution 

 

 

Guang-Wei Zhang1,*, Shangzhou Xia1,2,*, Nicole K. Zhang1, Fan Gao4,  

Berislav V. Zlokovic1, Li I. Zhang1,3, Zhen Zhao1,#, Huizhong W. Tao1,3,# 

 

 

1Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of 

Medicine,  

2Graduate Programs in Biological and Biomedical Sciences, Keck School of Medicine,   

3Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, 

University of Southern California, Los Angeles, CA 90033. 

4Caltech Bioinformatics Resource Center (CBRC), Caltech, Pasadena, CA, United States. 

 

 

* These authors contributed equally to this work 

# Correspondence should be addressed to Z. Zhao (zzhao@usc.edu), or H.W.Tao 

(htao@usc.edu)  

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2023. ; https://doi.org/10.1101/2023.05.07.539389doi: bioRxiv preprint 

mailto:zzhao@usc.edu
mailto:htao@usc.edu
https://doi.org/10.1101/2023.05.07.539389
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract  

 

Alzheimer's disease (AD) is a complex neurodegenerative disorder that affects millions of people 

worldwide. Despite decades of research, the underlying molecular and cellular changes of AD 

remain unresolved, especially in terms of the spatial structure of gene expression changes that 

correlates with pathology, e.g. amyloid beta (A-beta) plaques. Recent advances in imaging- or 

sequencing-based single-cell spatial transcriptomics have allowed a systematic dissection of 

molecular and cell architectures in the brain and other tissues. In this study, we employed the 

recently developed Stereo-seq technology to spatially profile the whole-genome transcriptomics 

in the 5xFAD mouse model and established the methodology to analyze the specific neuronal 

transcriptomic changes spatially correlated with amyloid pathology at single cell resolution. More 

specifically, we developed a pipeline for integrative image- and non-image-based cell 

segmentation, VoxelMorph-based non-linear alignment, and Unet-based object detection to 

achieve reliable transcriptomics analysis at the single-cell resolution, and investigated the spatial 

relationship between diverse neuronal clusters and A-beta depositions. This work has 

demonstrated the potential of using the Stereo-seq technology as a powerful tool to investigate AD 

and other complex neurological disorders. 
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Introduction 

 

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder that still lacks an 

effective treatment (Scheltens et al. 2016). Biomarkers, such as amyloid beta (Murphy and LeVine 

III 2010) and tau proteins (Iqbal et al. 2010), have been identified and are often used to track 

disease progression and evaluate potential therapies. Amyloid beta (A-beta) forms the hallmark 

amyloid plaques, while tau proteins become hyperphosphorylated and form neurofibrillary tangles 

in the brains of Alzheimer's patients. Previous studies have suggested that these pathological 

changes exhibit specific spatial patterns in both human AD patients (Heiko Braak, Eva Braak, and 

Peter Kalus 1989) and animal models of AD (Gail Canter et al. 2019; Aldis P. Weible and Michael 

Wehr 2022). For example, neuropathology studies demonstrate that A-beta pathology exhibits a 

specific spatiotemporal pattern, starting in association cortices and spreading from neocortex to 

allocortex, which potentially drives tau pathology at later stages (van der Kant, Goldstein, and 

Ossenkoppele 2020). These observations suggest that revealing the spatial architecture of AD 

pathology may potentially provide additional clues to the selective vulnerability in AD.   

In recent years, single-cell RNA sequencing has emerged as a powerful technique for 

investigating gene expression changes at the single-cell level. This technology allows researchers 

to measure gene expression in individual cells, providing unprecedented insights into cell diversity 

and functions. Previous studies have adopted the single-cell RNA sequencing (scRNA-seq) 

technique to characterize the transcriptomic changes in patients diagnosed with AD (Mathys et al. 

2019; Liu-Lin Xiong et al. 2021; Trygve E. Bakken et al. 2018; Marta Olah et al. 2020; Blue B. 

Lake et al. 2016; Jorge L. Del-Aguila et al. 2019), as well as in animal models such as the 5xFAD 

(Yaming Wang et al. 2016; Habib et al. 2020; Minghui Wang et al. 2022) and APP/PS1 mice 

(Minghui Wang et al. 2022; Emma Gerrits et al. 2021; Soyon Hong et al. 2016). These studies 

generated fruitful results and offered a considerably deeper understanding of the cellular and 

molecular changes associated with AD. However, the scRNA-seq data cannot provide information 

on the location of individual cells within the tissue or the spatial relationship of individual cells 

with pathological hallmarks, such as plaques and tangles in AD. 

Spatial transcriptomics is a rapidly developing field (Moses and Pachter 2022; Rao et al. 

2021), and has been quickly adapted in neuroscience (Cameron G Williams et al. 2022; Jennie L. 

Close, Brian R. Long, and Hongkui Zeng 2021; Ed S. Lein, Lars E. Borm, and Sten Linnarsson 

2017; Jürgen Germann et al. 2022; Patrik L. Ståhl et al. 2016), developmental (Cameron G 

Williams et al. 2022; Ed S. Lein, Lars E. Borm, and Sten Linnarsson 2017; Jürgen Germann et al. 

2022; Patrik L. Ståhl et al. 2016) and cancer biology (Taku Monjo et al. 2022; Rao et al. 2021; 

Niyaz Yoosuf et al. 2020; Emelie Berglund et al. 2018; Alona Levy-Jurgenson et al. 2020; Kim 

Thrane et al. 2018). A recent study has investigated molecular changes and cellular interactions 

around amyloid plaques using spatial transcriptomics in an AD mouse model. It has revealed early 

alterations in a gene co-expression network enriched for myelin and oligodendrocyte genes, and 

late-stage multicellular co-expression networks of plaque-induced genes involved in various 

cellular processes including oxidative stress and inflammation (W.-T. Chen et al. 2020). However, 

due to technical limitations, the study did not achieve the whole genome scale and single cell 
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resolution at the same time. Here, we adopted a newly developed spatial transcriptomics 

technology that could achieve both single cell resolution and whole transcriptome coverage, 

SpaTial Enhanced REsolution Omics-sequencing (Stereo-seq) (A. Chen et al. 2022; Wei et al. 

2022), to profile a 6-month-old male 5xFAD mouse.  Neurons, as the primary targets of AD, 

experience both direct and indirect effects from amyloid accumulation over time. Consequently, 

our research aims to explore transcriptomic changes in neuronal populations in relation to amyloid 

pathology. We have developed an integrative approach combining image- and non-image-based 

cell segmentation, non-linear brain section alignment using VoxelMorph, and Unet-based object 

detection. By analyzing spatially resolved single-cell transcriptomics, we can examine the 

potential association between transcriptomic alterations in diverse cell clusters and amyloid 

deposition. Our findings highlight the potential of Stereo-seq technology as a valuable tool for 

investigating complex neurological disorders. 

 

Results 

 

Sample preparation for spatial transcriptomics 

The brain of a 6-month-old male 5xFAD mouse was collected and subjected to a tissue preparation 

protocol. The brain tissue was frozen and embedded in OCT (optimal cutting temperature) medium. 

After evaluating the quality of the RNA, multiple coronal sections were obtained through cryo-

sectioning (Figure 1A). The brain sections were then placed on the surface of STOmics chips. 

Fixation and permeabilization were then applied, allowing for the capture of released mRNA 

molecules by spatially barcoded probes on the surface of the STOmics chip. Reverse transcription 

was performed to generate the cDNA library, followed by sequencing (Figure 1B). Meanwhile, 

to determine the correlation between spatial transcriptomic changes and A-beta deposits, we 

performed A-beta immunostaining on adjacent brain sections (Figure 1C). After sequencing, 

quality control measures were taken to ensure the accuracy of the sequenced data. GRCm38 mouse 

genome was used as the reference for alignment. In total, we obtained 4.78 billion reads from this 

sample. After the quality control, the coronal section (hemisphere) contained around 82.3 million 

effective reads. Based on the barcoded x and y coordinates of captured individual mRNA 

molecules in the tissue section, we could reconstruct the spatial profile of these mRNA molecules 

as the spot-by-gene matrix (Figure 1D). Then, the image of immunofluorescence (IF) staining for 

A-beta and the reconstructed spatial transcriptomics would be aligned (Figure 1E) for co-analysis. 

Integrative image- and non-image-based cell bin segmentation  

In principle, this gene spatial matrix provides individual transcript information at subcellular 

resolution, which however requires reliable cell segmentation. Therefore, the generation of a cell 

bin dataset through single cell segmentation is a crucial step. In this study, we employed an 

approach that leverages both image- and non-image-based estimation of cell bin. The image-based 

pipeline consisted of three steps: pixel classification, watershed segmentation, and instance 

segmentation. The non-image-based pipeline utilized the spatial density estimation and fitting to 

find the locations of the estimated cells. Then, the image- and non-imaged-based segmentations 
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would be merged to determine the cell bin segmentation (Figure 1F-K). In the image-based 

approach, we utilized the ilastik (Berg et al. 2019) to perform pixel-level classification on the raw 

single-stranded DNA (ssDNA) image (Figure 1F-H). The goal was to distinguish between the 

cells and the background based on the ssDNA intensity. The output of this step was a binary mask 

that identified the regions of the image corresponding to the cells (Figure 1G). Next, we applied 

the watershed algorithm to separate the crowded objects in the binary mask. The watershed 

algorithm is a well-established technique for object separation in images, and it was used in this 

study to separate cells that were touching or overlapping. The output of this step was an image 

where each cell was separated from its neighbors and assigned a unique label. This step involved 

computing the contours of each cell in the label image and plotting them as separate, filled 

polygons in different colors (Figure 1H). We noticed that not all cells indicated by the ssDNA 

image could be captured, thus underlining the potential problems for solely image-based 

approaches. The non-image-based approach was based on the property that the RNA molecules 

tend to aggregate close to the soma (Figure 1I). We used the spatial density estimation based on 

the RNA spatial distribution and found that this could be advantageous in segmenting cells (Figure 

1J, K). We integrated results from both approaches and only obtained cell bin when two estimation 

results matched. This cell bin segmentation allowed us to obtain the cell-by-gene matrix for the 

follow-up analysis. 

Neuronal cell bin clustering 

After establishing the cell bin matrix, we took measures of quality control including removing of 

low-quality cells (with gene counts < 100) and inspection of the spatial distribution of transcript 

counts (Figure 2A, B). In this study, since we focused on the neuronal population, we filtered the 

dataset using neuronal markers (e.g., Slc17a7, Slc32a1, Sst, Th, etc.). Then, we performed 

dimensional reduction (based on variable genes) and unbiased clustering using the Louvain 

algorithm. After the clustering, we visualized the results using a t-SNE (t-Distributed Stochastic 

Neighbor Embedding) plot (Figure 2C). Meanwhile, we obtained a marker gene list for each 

cluster based on the differential expression analysis (Figure 2D). The preservation of the 

coordinate information of the captured RNA molecules provided us with the opportunity to 

reconstruct the spatial profile of gene expression. Therefore, we projected the cluster identities to 

the spatial location (Figure 2E). From this spatial plot, we could clearly see clusters localizing in 

the thalamus (Figure 2F), neocortical laminae (Figure 2G), and the ventral tegmental area (Figure 

2H). Cell-type matching was applied to assign reference scRNA-seq cell types to each segmented 

cell with an associated confidence score based on the identified marker genes as well as their 

spatial localization. Applying the cell-type matching algorithms produced a cell-by-type matrix as 

a primary output, consisting of probabilistic assignment of each segmented cell to one of the 

reference cell types at the subclass level.  

Cross validation of the Stereo-seq data with ISH staining 

To evaluate the reliability of the Stereo-seq data, we compared the spatial expression of selected 

genes reconstructed using the Stereo-seq to that of the in situ hybridization (ISH) staining result 

of the Allen Brain Atlas (Figure 3). Prox1 (Prospero Homeobox 1) is a transcription factor with 

primary expression observed in the dentate gyrus of the hippocampus. Dkk3 (Dickkopf-related 

protein 3) exhibits expression in the hippocampal CA1-3 regions. Dcn (Decorin) is found in the 
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ventral hippocampal region, while Prkcd (Protein Kinase C Delta) is expressed in the thalamus. 

Slc6a3 (Solute carrier family 6 member 3), also known as DAT (Dopamine transporter), is 

predominantly located in the substantia nigra and ventral tegmental area. Lastly, Nrgn 

(Neurogranin) displays high-level expression in regions relevant to learning and memory, such as 

the cortex, hippocampus, and amygdala (Lein et al. 2007). The comparison revealed that the spatial 

expression patterns obtained from the two datasets were highly consistent with each other. This 

provides further support for the reliability of the Stereo-seq data, demonstrating its ability to 

accurately capture and reconstruct the spatial gene expression patterns in the tissue.  

Amyloid deposition analysis 

Using immunohistological staining, we could visualize the accumulation of amyloid plaques in 

different brain regions (Figure 4A, B). We adopted a Unet-based segmentation model to classify 

pixel and segment the amyloid beta deposit (Figure 4C, D). Then we performed non-linear and 

3D alignment to register the coronal sections to the Allen Brain Atlas (2017 version, Figure 4E-

G). From this model output, we could clearly see that amyloid beta deposits exhibit a specific 

rather than a diffused spatial distribution pattern. Based on the atlas registration, we further 

quantified the A-beta load in each brain region. Consistent with a previous report (Gail Canter et 

al. 2019), we observed that A-beta exhibits high-level deposition in the subiculum, hippocampus, 

entorhinal cortex and cortical amygdala region, etc. (Figure 4H). This result further suggests the 

possibility that the amyloid beta deposition could differentially affect different cellular clusters.  

Integrative analysis of spatial transcriptomics and amyloid beta deposition 

To correlate the single-cell spatial transcriptomics with the amyloid beta pathohistological map, 

we co-registered the spatial transcriptomics and the amyloid beta histological data using the Voxel 

Morph model architecture (Figure 5A). Meanwhile, we used the shortest distance to the amyloid 

beta deposition center as an index to describe the spatial relationship between the cell bin and the 

amyloid beta plaque (Figure 5A). In this way, we could obtain a spatial map of amyloid distance 

index for each cell bin (Figure 5B), from which we could see that some cells were spatially closer 

to A-beta plaques than others. Next, we applied the amyloid distance index to cell clusters in the 

dimensional reduction plot and found that some cell clusters are more closely related to amyloid 

beta plagues in the spatial dimension than others (Figure 5C-D), as shown by the ranking of the 

clusters based on the median amyloid distance index (Figure 5D). Using this approach, we would 

be able to investigate the relationship between cell bin (and cell type) and pathological changes in 

a spatially resolved manner.  

Anatomical region-specific analysis 

One advantage of using spatial transcriptomics is that it allows us to accurately segment specific 

anatomical regions for region-specific analysis. We first registered the spatial transcriptomic data 

to the Allen brain atlas based on visible landmarks using QuickNii (see Methods). Next, we fine-

tuned the alignment based on the molecularly defined boundaries for each region (e.g. using 

thalamus-specific genes to define thalamic boundaries). Based on the integrative anatomy-

molecular atlas registration, we could assign the anatomical region tag for each cell bin.  To 

demonstrate the anatomical region-specific analysis, we used the segmentation of the auditory 

cortical region as an example (Figure 6A). After 3D-based atlas registration of the data (Figure 

6A), we could extract the cell bin data specifically from the anatomically defined region (e.g., 
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auditory cortex), and perform cell-type clustering within the selected region (Figure 6B-C). 

Further, we can visualize their relationship with amyloid beta deposition (Figure 6D-E).  

  

Discussion 

In this study, we have successfully applied the Stereo-seq technology to analyze transcriptomic 

profiles in a 6-month-old male 5xFAD mouse model of AD and developed an integrative image- 

and non-image-based cell segmentation method. By doing so, we could identify vulnerable cell 

clusters spatially associated with the amyloid-beta deposition. We have validated the reliability of 

the Stereo-seq data through comparing them to in situ hybridization results. In addition, we have 

performed anatomical region-specific analysis by quantifying the accumulation of A-beta plaques 

in different brain regions using Unet-based segmentation. By extracting data from selected brain 

regions with enriched A-beta deposition, we could establish the spatial relationship between cell 

clusters and amyloid-beta plaques. These results highlight the significance of employing advanced 

technologies such as Stereo-seq to better understand the molecular mechanisms underlying 

neurodegenerative disorders such as Alzheimer’s disease. 

During this research, we have made significant methodological advancements, particularly 

with the development of the integrative image- and non-image-based cell segmentation method. 

The accuracy of the Stereo-seq output based on this cell segmentation method, as assessed by 

comparing it to in situ hybridization results and other ground truth references, highlights the 

robustness of this technology in capturing and reconstructing spatial gene expression patterns. This 

further solidifies the potential of Stereo-seq as a valuable tool for investigating complex 

neurological diseases in general. 

As the current focus is on the technique validation, we have only examined a single time 

point in the AD disease progression. Future studies could benefit from examining multiple time 

points, which would provide a more comprehensive understanding of the dynamic changes in gene 

expression patterns and the spatial organization of vulnerable cell populations throughout the 

disease progression. This information could help to identify key stages in the disease process where 

interventions might be the most effective. More importantly, the scalability of this technique makes 

it suitable for application in much larger tissues, including samples from human AD patients.  

Another potential direction for future research is the integrative investigation of other 

neurodegenerative diseases that requires cross-modality approaches, e.g. combined histology and 

spatial genetic technology. Comparisons between different diseases may then help to identify 

common and distinct molecular pathways contributing to neurodegeneration, which could inform 

the development of more targeted and effective therapies. 

In conclusion, this study demonstrates the potential of the Stereo-seq technology for 

investigating complex neurological disorders such as Alzheimer's disease. Our methodological 

advancements, in particular the development of an integrative image- and non-image-based cell 

segmentation approach, provide valuable tools for future spatial transcriptomics studies in 

neuroscience. The insights gained from the research along this direction can help to improve our 
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understanding of the molecular mechanisms underlying Alzheimer's disease and other 

neurodegenerative disorders, paving the way for the development of novel therapeutic strategies. 
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Methods  

Animals 

We obtained two adjacent coronal sections by cryo-sectioning the brain from a male 5xFAD mouse 

at 6 months of age. One of the sections was processed for Stereo-seq-based spatial transcriptomic 

profiling, whereas the other was immunostained for amyloid beta.  

STOmics library preparation 

The Omics library preparation was performed as previously described (A. Chen et al. 2022; Wei 

et al. 2022). Briefly, samples were thawed at -20°C for at least 30 minutes, and sectioned 

coronally using a Leika CM 1950 cryostat (10 μm in thickness). The STOmics chips (1cm x 

1cm) were washed with nuclease free water (NF water) (Ambion, Cat. NO. AM9937) twice and 

dried at 37°C for 1 minute. Then, the brain section was mounted to the surface of the pre-chilled 

capture chip and incubated at 37°C for 3 minutes. Chips with sections were immersed 

immediately in pre-cold methanol and incubated for 30 minutes at -20°C before library 

preparation (see below).  

Single cell nuclei staining 

After fixation or immunofluorescence (IF) staining on chips, sections were stained with Qubit 

ssDNA reagent (Thermo Fisher, Q10212) diluted in 5 × SSC (Thermo Fisher, AM9763) for 5 

minutes. Chips were further washed with 0.1x Wash Buffer (0.1 × SSC supplemented with 5% 

RNAase inhibitor [BGI-Research, 1000028496]) and dried for imaging. The Motic Custom PA53 

FS6 microscopy was used for nuclei staining images at the channel of FITC with a 10x objective 

len. 

Tissue permeabilization 

After imaging, tissue section mounted on the chip was permeabilized with PR Enzyme (BGI-

Research, 1000028496) in 0.01M HCl buffer at 37°C for 12 to 15 minutes, and washed with 0.1x 

Wash Buffer. 

In situ reverse transcription (RT) 

After permeabilization, the released mRNA molecules that were captured by DNA nanoball (DNB) 

were reverse transcribed immediately at 42°C for 3 hours using RT Mix (BGI-Research, 

1000028496), including RT reagent, RT Additive, RNAase Inhibitor, RT Oligo and Reverse 

Transcriptase Enzyme. 

Tissue removal 

The same chips with brain sections were then washed with 0.1x Wash Buffer and digested with 

Tissue Removal buffer (1BGI-Research, 1000028496) at 55°C for 10 minutes. 

cDNA purification and amplification 

The cDNA Release Mix (BGI-Research, 1000028496), including cDNA Release Enzyme and 

cDNA release Buffer was added to the chips and incubated at 55°C overnight. The resulting 

cDNAs were purified with VATHS DNA Clean beads (0.8x, Vazyme, N411-03), and amplified 

with cDNA Amplification Mix and cDNA Primer (5-CTGCTGACGTACTGAGAGGC-3) (BGI-

Research, 1000028496). PCR reactions were set up as follows: incubation at 95°C for 5 minutes, 
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15 cycles at 98°C for 20 seconds, 58°C for 20 seconds, 72°C for 3 minutes and a final incubation 

at 72°C for 5 minutes, hold infinite R 12°C. 

STOmics library construction and sequencing 

The STOmics library construction and sequencing procedures were conducted as previously 

described by Chen et al. (2022) and Wei et al. (2022). The resulting PCR products were further 

purified with VATHS DNA Clean beads (0.6x, Vazyme, N411-03) and quantified by Qubit 

dsDNA Assay Kit (Thermo, Q32854). A total of 20 ng of DNA was then fragmented with in-house 

Tn5 transposase at 55°C for 10 minutes, after which the reactions were stopped by the addition of 

0.02% SDS and gently mixing at 37°C for 5 minutes. Fragmented products were amplified as 

follows: 25 ml of fragmentation product, 1 3 KAPA HiFi Hotstart Ready Mix and 0.3 mM Stereo-

seq-Library-F primer, 0.3 mM Stereo-seq-Library-R primer in a total volume of 100 ml with the 

addition of nuclease-free H2O. The reaction was then run as: 1 cycle of 95°C 5 minutes, 13 cycles 

of 98°C 20 seconds, 58°C 20 seconds and 72°C 30 seconds, and 1 cycle of 72°C 5 minutes. PCR 

products were purified using the AMPure XP Beads (0.63 and 0.153), used for DNB generation 

and finally sequenced on MGI DNBSEQ-Tx sequencer. 

Adjacent sections with IF staining 

The adjacent section was fixed in pre-chilled methanol for 5 minutes at -20°C, and further 

subjected to 1xDPBS (Gibco, 14190-144) to remove the excessive OCT. After creating 

hydrophobic barrier with ImmEdge Pen (Vector, H-4000), the section was blocked with 5% 

donkey serum (Sigma, D9963) blocking buffer at room temperature for 30 minutes, and then 

incubated with FITC conjugated mouse anti-beta Amyloid ( MOAB-2) (Novus, NBP2-13075F) 

and Hoechst dye (H3954) for 15 mins at room temperature. Afterwards, the section was washed 

with 1xDPBS for twice, mounted with Antifade Mounting Medium (Vector, H-1000) and imaged 

with a Nikon confocal microscope. 

Immunostaining of beta amyloid  

To determine the correlation between transcriptional changes and A-beta deposits, we performed 

A-beta immunostaining on the adjacent brain section. The section was first blocked with Blocking 

Buffer (20xSSC, donkey serum, 10% Triton-x-100, RI, NF water) for 15 minutes on ice, and then 

incubated with FITC-conjugated mouse anti-beta Amyloid (MOAB-2) (Novus, NBP2-13075F) 

with the same Blocking Buffer for another 15 minutes on ice. The section was then washed twice 

with Wash Buffer (20xSSC, 10% Triton-x-100, 5% RI, NF water) and once with 0.1xSSC. Nuclei 

were stained with DAPI (ThermoFisher, D1306). Afterwards, we aligned the cell bin section with 

the amyloid-beta/DAPI staining section. 

STOmics raw data processing 

The MGI DNBSEQ-Tx sequencer generated the Fastq files. Read 1 consisted of coordinate 

identity (CID) (1-25bp) and molecular identity (MID) (26-35 bp) sequences, while read 2 

contained the sequence of cDNA. The STOmics Analysis Workflow (SAW) was used to perform 

quality control of sequencing data, genome alignment and quantification of gene expression. 

Firstly, CID sequences in Read 1 were compared with barcode sequences on STOmics chip, and 

read pairs containing valid CIDs are extracted. For read pairs containing valid CIDs, the CID 

sequence was converted into the spatial position information on the slice and written into the read 
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ID of Read 2. Then valid reads in Read 2 were filtered out as final Clean Reads. Clean reads are 

mapped to the GRCm38 reference genome for alignment, and the number of reads mapped to exon 

regions, intron regions and intergenic regions was counted. Reads overlapped more than 50% with 

the exon region were counted as exon transcripts. Reads overlapped less than 50% with the exon 

region yet possessing overlapped sequences with the adjacent intron sequence were annotated as 

intron transcripts, otherwise as intergenic transcripts. Finally, the exonic reads were used to 

generate a CID-containing expression profile matrix. Then, locating Unique Mapping Reads to 

genes, removing duplicate MIDs, and calculating the expression levels of all genes according to 

MID correction were performed. The Stereo-seq method is based on DNA nanoball (DNB)-

patterned arrays and in situ RNA capture to reconstruct the spatial transcriptomic map. The 

diameter of the DNA nanoball is 220nm. The center-to-center distance of adjacent DNA nanoballs 

is 500µm.  

Spatial gene matrix  

The spatial transcriptomic data obtained using stereo-Seq is a collection of detected molecules, 

each corresponding to a specific gene, with predefined and barcoded coordinates of the molecule 

within the field of view. The gene matrix table contained information regarding each nanoball with 

gene name, x and y coordinate, as well as the count number.  

Cell bin segmentation 

Cell pixel classification was performed using ilastik (Berg et al. 2019) to generate the segmented 

image. To detect the cell boundary, distance transform watershed was used as instance 

segmentation. Size opening was performed to reduce background noise, and smaller objects that 

would not fit into cellular shape were removed.   

Brain section registration 

The registration was divided into two steps. First, we applied the linear affine alignment in the 3D 

space using QuickNii ABAMouse 2017 (https://www.nitrc.org/projects/quicknii). Next, the non-

linear deformation 2D fine tuning with intervention was performed by experienced experimenters 

using the VisuAlign (https://www.nitrc.org/projects/visualign/). The registered colormap could be 

converted to the polygon shapefile using Adobe Illustrator (https://www.adobe.com) and Qupath 

(https://qupath.github.io/). The shapefile will be used for the cell bin or 50 bin registration using 

customized python code (in Python2.8, primarily using the geopandas library, Written by Guang-

Wei Zhang, which will be available on Github: https://github.com/GuangWei-Zhang).  

Postprocessing  

Seurat V4, stereopy (https://github.com/BGIResearch/stereopy), and spateo (Qiu et al. 2022) were 

used in this study were used in this study. The h5seurat files for each brain section will be loaded 

using a customized data loader to match the Seurat format. For the stereopy analysis, the .gef cell 

bin files were adopted.  Detailed scripts that could replicate all results in this study will be made 

available on Github (https://github.com/GuangWei-Zhang). 

Quantification of A-beta deposition 

The amyloid-beta and ssDNA images were registered using nonlinear transformation based on 

VoxelMorph framework. The customized Unet model was used for amyloid-beta segmentation. 
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The registration and quantification were achieved through the QUINT processing pipeline 

(Groeneboom et al. 2020).  
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Figures 

 

 

 

Figure 1. Sample preparation pipeline and cell bin segmentation. 

(A) Two adjacent coronal hemisphere sections obtained from a male 6-month-old 5xFAD 

mouse. 

(B) One coronal section went through the StereoSeq process to reconstruct the sequencing-based 

spatial transcriptome.  

(C) The other coronal section went through immunofluorescence staining to visualize the 

amyloid beta deposition. 

(D) Post-sequencing processing to reconstruct the spatial transcriptomic profile. 
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(E) The amyloid beta immunostaining data, spatial transcriptomic data and the ssDNA imaging 

data were co-registered. 

(F-H) The image-based approach to segment cell bin based on the co-registered ssDNA image. 

The raw image is shown in (F), with (G) providing the zoomed-in view. (H) shows the instance 

segmentation of all the nuclei. 

(I-K) The non-image-based approach to estimate the cell location based on the spatial profile of 

captured RNA density. (I) shows the raw spatial distribution of RNA, each dot represents a 

single RNA copy. (J) is the fitted spatial density heatmap using kernel density estimation. (K) is 

the 3D mesh view of the estimated spatial distribution.  

(L) Segmented cell bin through the integration of both image- and non-image-based cell bin 

segmentation approaches.   
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Figure 2. Neuronal cell-type clustering of spatial transcriptomic data. 

(A) Violin plot shows the number of transcripts and aligned genes per cell bin. 

(B) Spatial heatmap of number of genes across the coronal section.  

(C) Dimensional plot of the data using tSNE plot. 

(D) Heatmap shows the marker genes for each cluster (labeled by one color on top).  

(E) Spatial plot of clusters for the whole coronal section.  

(F-H) Zoomed-in view for selected regions in (E). DG, dentate gyrus. AUD, auditory cortex. 

VTA, ventral tegmental area.   
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Figure 3. Cross validation with in situ hybridization data. 

Left column shows the ISH image of selected genes, right column shows the spatial distribution 

of corresponding genes based on the Stereo-seq analysis. 
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Figure 4. Spatial characterization of amyloid beta deposition. 

(A) Image shows the amyloid beta immunostaining (green) together with DAPI staining (blue). 

(B) Enlarged view of the selected region in (A). 

(C) The Unet model architecture for amyloid beta segmentation.  

(D) Example model prediction output of the segmented amyloid beta deposit. 

(E) 3D brain section registration to the Allen Brain Atlas 2017. 

(F) 3D mesh view of mouse brain. 

(G) 3D view of the registered amyloid beta spatial distribution. 

(I) Statistics of amyloid beta load per anatomical area. 
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Figure 5. Integrative analysis of neuronal spatial transcriptomics and amyloid beta 

deposition. 

(A) Nonlinear registration of amyloid beta deposition and spatial transcriptomics data. For each 

cell bin, the shortest distance towards the center of amyloid beta deposition was calculated. 

(B) Spatial plot of the amyloid distance index for each cell bin. 

(C) Dimensional plot shows the amyloid distance index for each cluster. 1 unit = 50um,   

(D) Ranking of clusters based on median amyloid distance index, with color indicating the 

relative distance. Blue and red represent the farthest and closest distance respectively. 
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Figure 6. Spatial segmentation analysis of selected anatomical regions.  

(A) The selected anatomical region, covering the auditory cortex (red).  

(B) Spatial plot of cell bin in the selected region, with color representing the identify of clusters. 

(C) Spatial plot of A-beta distance index for each cell bin. 

(D) DimPlot of clusters for the selected region. 1 unit = 50um,   

(E) DimPlot of relative A-beta distance for the selected region.  
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